Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 222
Filter
1.
Fitoterapia ; 175: 105908, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38479621

ABSTRACT

Three undescribed sesquiterpenes, designed as pichinenoid A-C (1-3), along with nine known ones (4-12) were isolated from the stems and leaves of Picrasma chinensis. The new isolates including their absolute configurations were elucidated based on extensive spectroscopic methods, single crystal X-ray diffraction, and electronic circular dichroism (ECD) experiments, as well as comparison with literature data. Structurally, compounds 1 and 2 are descending sesquiterpenes, while pichinenoid C (3) is a rare sesquiterpene bearing a 2-methylenebut-3-enoic acid moiety at the C-6 side chain. All the isolated compounds were tested for their neuroprotective effects against the H2O2-induced damage on human neuroblastoma SH-SY5Y cells, and most of them showed moderate neuroprotective activity. Especially, compounds 1, 3-5, and 7 showed a potent neuroprotective effect at 25 or 50 µM. Moreover, the neuroprotective effects of compounds 1 and 4 were tested on a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) mouse model. Results of western blot and immunofluorescence indicated that compound 4 significantly counteract the toxicity of MPTP, and reversed the expression of tyrosine hydroxylase (TH) in substantia nigra (SN) and striatum (ST) of the mouse brain. Interestingly, western blot data suggested compound 4 also enhanced B-cell lymphoma-2 (Bcl-2) and heme oxygenase 1 (HO-1) expressions in the brain tissues from MPTP damaged mouse.

2.
Int J Biol Macromol ; 265(Pt 2): 131066, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38521339

ABSTRACT

Human rhinovirus 3C protease (HRV 3CP) has a high specificity against the substrate of LEVLFQ↓G at P1' site, which plays an important role in biotechnology and academia as a fusion tag removal tool. However, a non-ignorable limitation is that an extra residue of Gly would remain at the N terminus of the recombinant target protein after cleavage with HRV 3CP, thus potentially causing protein mis-functionality or immunogenicity. Here, we developed a combinatorial strategy by integrating structure-guided library design and high-throughput screening of eYESS approach for HRV 3CP engineering to expand its P1' specificity. Finally, a C3 variant was obtained, exhibiting a broad substrate P1' specificity to recognize 20 different amino acids with the highest activity against LEVLFQ↓M (kcat/KM = 3.72 ± 0.04 mM-1∙s-1). Further biochemical and NGS-mediated substrate profiling analysis showed that C3 variant still kept its substrate stringency at P1 site and good residue tolerance at P2' site, but with an expanded P1' specificity. Structural simulation of C3 indicated a reconstructed S1' binding pocket as well as new interactions with the substrates. Overall, our studies here prompt not only the practical applications and understanding of substrate recognition mechanisms of HRV 3CP, also provide new tools for other enzyme engineering.


Subject(s)
Endopeptidases , Peptide Hydrolases , Humans , Peptide Hydrolases/metabolism , Heart Rate , Endopeptidases/metabolism , Amino Acids , 3C Viral Proteases/metabolism , Recombinant Proteins/chemistry , Substrate Specificity
3.
Front Immunol ; 15: 1330021, 2024.
Article in English | MEDLINE | ID: mdl-38433840

ABSTRACT

The prevalence rate of acute respiratory distress syndrome (ARDS) is estimated at approximately 10% in critically ill patients worldwide, with the mortality rate ranging from 17% to 39%. Currently, ARDS mortality is usually higher in patients with COVID-19, giving another challenge for ARDS treatment. However, the treatment efficacy for ARDS is far from satisfactory. The relationship between the gut microbiota and ARDS has been substantiated by relevant scientific studies. ARDS not only changes the distribution of gut microbiota, but also influences intestinal mucosal barrier through the alteration of gut microbiota. The modulation of gut microbiota can impact the onset and progression of ARDS by triggering dysfunctions in inflammatory response and immune cells, oxidative stress, cell apoptosis, autophagy, pyroptosis, and ferroptosis mechanisms. Meanwhile, ARDS may also influence the distribution of metabolic products of gut microbiota. In this review, we focus on the impact of ARDS on gut microbiota and how the alteration of gut microbiota further influences the immune function, cellular functions and related signaling pathways during ARDS. The roles of gut microbiota-derived metabolites in the development and occurrence of ARDS are also discussed.


Subject(s)
Gastrointestinal Microbiome , Respiratory Distress Syndrome , Humans , Oxidative Stress , Apoptosis , Autophagy
4.
Phytochemistry ; 218: 113932, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38056516

ABSTRACT

Twenty-six clerodane diterpenoids have been isolated from T. sagittata, a plant species of traditional Chinese medicine Radix Tinosporae, also named as "Jin Guo Lan". Among them, there are eight previously undescribed clerodane diterpenoids (tinotanoids A-H: 1-8), and 18 known diterpenoids (9-26). The absolute configurations of compounds 1, 2, 5, 8, 13, 17 and 20 were determined by single-crystal X-ray diffraction. Compound 1 is the first example of rotameric clerodane diterpenoid with a γ-lactone ring which is constructed between C-11 and C-17; meanwhile, compounds 3 and 4 are two pairs of inseparable epimers. Compounds 2, 12 and 17 demonstrated excellent inhibitory activity on NO production against LPS-stimulated BV-2 cells with IC50 values of 9.56 ± 0.69, 9.11 ± 0.53 and 11.12 ± 0.70 µM, respectively. These activities were significantly higher than that of the positive control minocycline (IC50 = 23.57 ± 0.92 µM). Moreover, compounds 2, 12 and 17 dramatically reduced the LPS-induced upregulation of iNOS and COX-2 expression. Compounds 2 and 12 significantly inhibited the levels of pro-inflammatory cytokines TNF-α, IL-1ß and IL-6 that were increased by LPS stimulation.


Subject(s)
Diterpenes, Clerodane , Menispermaceae , Tinospora , Diterpenes, Clerodane/pharmacology , Diterpenes, Clerodane/chemistry , Tinospora/chemistry , Lipopolysaccharides/pharmacology , Plant Roots/chemistry , Molecular Structure
5.
Alcohol Clin Exp Res (Hoboken) ; 47(10): 1839-1849, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37864530

ABSTRACT

BACKGROUND: Chronic alcohol ingestion predisposes to lung injury and disrepair during sepsis. Our previous studies outlined roles for transforming growth factor-beta 1 (TGFß1) and granulocyte-macrophage colony-stimulating factor (GM-CSF) in epithelial barrier homeostasis and how alcohol perturbs their expression and signaling. Here we hypothesize that ethanol-exposed lung fibroblasts (LF) are a source of dysregulated TGFß1 and GM-CSF and thereby alter airway epithelial barrier function. METHODS: Human or rat LF were cultured ± ethanol for 2 weeks and then co-cultured with human or rat airway epithelial cells (AEC) seeded on Transwell permeable supports. In selected groups, a TGFß1 receptor type 1 (TGFßR1) inhibitor (SB431542) or a TGFß1 neutralizing antibody was applied. Transepithelial electrical resistance (TER) was measured prior to co-culture and on day 5 of co-culture. AEC were then analyzed for the expression of selected tight junction and mesenchymal proteins, and transwell membranes were analyzed by immunofluorescence microscopy for ZO-1 expression and localization. TGFß1 and GM-CSF levels in conditioned media from the co-cultures were quantified by ELISA. RESULTS: AEC co-cultured with ethanol-exposed LF (ELF) showed a significant reduction in TER and corresponding decreases in ZO-1 expression, whereas collagen type 1A1 and α-smooth muscle actin protein expression were increased. In parallel, in conditioned media from the ELF + AEC co-cultures, activated TGFß1 levels increased and GM-CSF levels decreased. Notably, all the effects of ELF on the AEC were prevented by blocking TGFß1 activity. CONCLUSIONS: Prior ethanol exposure to LF induces barrier dysfunction in naive AEC in a paracrine fashion through activation of TGFß1 signaling and suppression of GM-CSF. These experimental findings provide a potential mechanism by which chronic alcohol ingestion impairs airway epithelial integrity and renders individuals susceptible to lung injury.

6.
Materials (Basel) ; 16(14)2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37512478

ABSTRACT

Cu2Se is a promising thermoelectric (TE) material due to its low cost, Earth abundance, and high thermoelectric properties. However, the biggest problem of Cu2Se is its unstable chemical properties. In particular, under the action of an electric field or gradient temperature field, the chemical potential of copper ions inside the material increases. When the external field is strong enough, the chemical potential of copper ions at the negative end of the material reaches the chemical potential of elemental copper. Under these conditions, copper ions must precipitate out, causing Cu2Se to be unstable, and making it unsuitable for use in applications. In this study, we prepared Cu2-xMnxSe (x = 0, 0.02, 0.04 and 0.06) series bulk materials by vacuum melting-annealing and sintered by spark plasma sintering (SPS). We investigated the effects of Mn doping on the composition, microstructure, band structure, scattering mechanism, thermoelectric properties, and stability of Cu2Se. The results show that Mn doping can adjust the carrier concentration, promote the stabilization of the ß-phase structure and improve the electrical properties of Cu2Se. When x = 0.06, the highest power factor (PF) value of Cu1.94Mn0.06Se at 873 K was 1.62 mW m-1 K-2. The results of carrier scattering mechanism analysis based on the conductivity ratio method show that the sample doped with Mn and pure Cu2Se had the characteristics of ionization impurity scattering, and the scattering factor was 3/2. However, the deterioration in thermal conductivity was large, and a superior zT value needs to be obtained. The cyclic test results of high-temperature thermoelectric properties show that Mn doping can hinder Cu+ migration and improve its thermoelectric stability, which preliminarily verifies the feasibility of using the stable zirconia mechanism to improve the thermoelectric stability of Cu2Se.

7.
Sci Rep ; 13(1): 7375, 2023 05 05.
Article in English | MEDLINE | ID: mdl-37147346

ABSTRACT

The genes enconding proteins containing plasma membrane proteolipid 3 (PMP3) domain are responsive to abiotic stresses, but their functions in maize drought tolerance remain largely unknown. In this study, the transgenic maize lines overexpressing maize ZmPMP3g gene were featured by enhanced drought tolerance; increases in total root length, activities of superoxide dismutase and catalase, and leaf water content; and decreases in leaf water potential, levels of O2-·and H2O2, and malondialdehyde content under drought. Under treatments with foliar spraying with abscisic acid (ABA), drought tolerance of both transgenic line Y7-1 overexpressing ZmPMP3g and wild type Ye478 was enhanced, of which Y7-1 showed an increased endogenous ABA and decreased endogenous gibberellin (GA) 1 (significantly) and GA3 (very slightly but not significantly) and Ye478 had a relatively lower ABA and no changes in GA1 and GA3. ZmPMP3g overexpression in Y7-1 affected the expression of multiple key transcription factor genes in ABA-dependent and -independent drought signaling pathways. These results indicate that ZmPMP3g overexpression plays a role in maize drought tolerance by harmonizing ABA-GA1-GA3 homeostasis/balance, improving root growth, enhancing antioxidant capacity, maintaining membrane lipid integrity, and regulating intracellular osmotic pressure. A working model on ABA-GA-ZmPMP3g was proposed and discussed.


Subject(s)
Drought Resistance , Zea mays , Zea mays/genetics , Zea mays/metabolism , Hydrogen Peroxide/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Abscisic Acid/metabolism , Stress, Physiological , Droughts , Water/metabolism , Gene Expression Regulation, Plant
8.
Int J Ophthalmol ; 16(5): 794-799, 2023.
Article in English | MEDLINE | ID: mdl-37206172

ABSTRACT

AIM: To investigate the myopia awareness level, knowledge, attitude, and skills at baseline and to implement and evaluate the efficacy of myopia prevention health education among Chinese students. METHODS: A total of 1000 middle school students from 2 middle schools were invited to participate in the study, and myopia prevention health education was conducted. The students were assessed at baseline, followed by a survey. The efficacy of health education was evaluated using the self-comparison method pre- and post-health education. RESULTS: The study included 957 and 850 pre- and post-health education participants, respectively. The baseline knowledge of all respondents on myopic symptoms (87.5%), myopia is a risk of eyes (72.9%), myopia prevention (91.3%), myopia increases with age (86.7%), performing periodic eye examinations (92.8%), and one first, one foot, and one inch (84.8%) significantly increased after health education (P<0.001 for all). However, the percentage of students who still did not think it necessary to take breaks after 30-40min of continuous near work was 27.0%. The opinion that "myopia can be cured" was still present in 38.3%. CONCLUSION: Implementing school-based myopia prevention health education improves knowledge, attitudes, and skills regarding myopia among Chinese middle school students.

10.
Nat Prod Bioprospect ; 13(1): 2, 2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36617588

ABSTRACT

Five new polychlorinated bibenzyls (1-5) along with 3 known compounds (6-8) were isolated from the stems and leaves of Rhododendron minutiflorum. The chemical structures of all the isolates were determined by spectroscopic methods, and compounds 1 and 2 were further verified by single-crystal X-ray diffraction analyses. Compounds 1-5 were halogenated compounds which bear three to five chlorine atoms in their chemical structures. Biologically, compounds 2, 5 and 6 showed varying degrees of toxicity toward the Asian citrus psyllid (Diaphorina citri) with LD50 values 27.15, 17.02 and 16.20 mg/L, respectively. These values were comparable to the positive control matrine (LD50 = 11.86 mg/L), which were calculated using observations on day 6. Meanwhile, compound 4 had α-glucosidase inhibitory activity with IC50 value of 17.87 ± 0.74 µM.

11.
AoB Plants ; 15(1): plac057, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36654987

ABSTRACT

The proteins with DNA-binding preference to the consensus DNA sequence (A/T) GATA (A/G) belong to a GATA transcription factor family, with a wide array of biological processes in plants. Cassava (Manihot esculenta) is an important food crop with high production of starch in storage roots. Little was however known about cassava GATA domain-containing genes (MeGATAs). Thirty-six MeGATAs, MeGATA1 to MeGATA36, were found in this study. Some MeGATAs showed a collinear relationship with orthologous genes of Arabidopsis, poplar and potato, rice, maize and sorghum. Eight MeGATA-encoded proteins (MeGATAs) analysed were all localized in the nucleus. Some MeGATAs had potentials of binding ligands and/or enzyme activity. One pair of tandem-duplicated MeGATA17-MeGATA18 and 30 pairs of whole genome-duplicated MeGATAs were found. Fourteen MeGATAs showed low or no expression in the tissues. Nine analysed MeGATAs showed expression responses to abiotic stresses and exogenous phytohormones. Three groups of MeGATA protein interactions were found. Fifty-three miRNAs which can target 18 MeGATAs were identified. Eight MeGATAs were found to target other 292 cassava genes, which were directed to radial pattern formation and phyllome development by gene ontology enrichment, and autophagy by Kyoto Encyclopaedia of Genes and Genomes enrichment. These data suggest that MeGATAs are functional generalists in interactions between cassava growth and development, abiotic stresses and starch metabolism.

12.
Plant Sci ; 327: 111543, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36427558

ABSTRACT

High air temperature (HAT) and natural soil drought (NSD) have seriously affected crop yield and frequently take place in a HAT-NSD combination. Maize (Zea mays) is an important crop, thermophilic but not heat tolerant. In this study, HAT, NSD, and HAT-NSD effects on maize inbred line Huangzao4 -were characterized. Main findings were as follows: H2O2 and O- accumulated much more in immature young leaves than in mature old leaves under the stresses. Lateral roots were highly distributed near the upper pot mix layers under HAT and near root tips under HAT-NSD. Saccharide accumulated mainly in stressed root caps (RC) and formed a highly accumulated saccharide band at the boundary between RC and meristematic zone. Lignin deposition was in stressed roots under NSD and HAT-NSD. Chloroplasts increased in number and formed a high-density ring around leaf vascular bundles (VB) under HAT and HAT-NSD, and sparsely scattered in the peripheral area of VBs under NSD. The RC cells containing starch granules were most under NAD-HAT but least under HAT. Under NSD and HAT-NSD followed by re-watering, anther number per tassel spikelet reduced to 3. These results provide multiple clues for further distinguishing molecular mechanisms for maize to tolerate these stresses.


Subject(s)
Droughts , Zea mays , Hydrogen Peroxide , Temperature , Plant Leaves , Soil
13.
ACS Synth Biol ; 12(1): 196-202, 2023 01 20.
Article in English | MEDLINE | ID: mdl-36580286

ABSTRACT

Developing effective bacterial autolytic systems for fast release of intracellular bioproducts could simplify purification procedures and help with the high throughput screening of mutant libraries in protein engineering. Here, we developed a fast and tightly regulated E. coli autolytic system, named the FhuD-lysozyme-SsrA mediated autolytic (FLSA) system, by integrating the secretion signal peptide, T7 lysozyme, and E. coli ClpX/P-SsrA protein degradation machinery. To decrease the cytotoxicity of leaky T7 lysozymes, the SsrA tag was fused to the C-terminus of T7 lysozyme to confer a tight regulation of its production. Using sfGFP as a reporter, we demonstrated that anchoring the Sec-Tat dual pathway signal peptide FhuD to the N-terminus of T7 lysozyme-SsrA could give the highest cell lysing efficiency. The optimization of the FLSA system indicated that weak alkaline conditions (pH 8.0) and 0.5% Triton X-100 could further increase the lysing efficiency by about 24%. The FLSA system was validated by efficient production of sfGFP and human growth hormone 1 (hGH1) in a shake flask, with a cell lytic efficiency of approximately 82% and 80%, respectively. Besides, the FLSA system was applied for large-scale fermentation, in which approximately 90% sGFP was released with a cell density OD600 of 110. Moreover, the FLSA system was also tested for α-amylase mutant library screening in microplates, and the results showed that intracellular α-amylase can be efficiently released out of cells for activity quantitation. In all, the FLSA system can facilitate the release of intracellular recombinant proteins into the cell culture medium, which has the potential to serve as an integrated system for large-scale production of recombinant targets and high throughput enzyme engineering in synthetic biology.


Subject(s)
Escherichia coli , Muramidase , Humans , alpha-Amylases/metabolism , Escherichia coli/metabolism , Muramidase/genetics , N-Acetylmuramoyl-L-alanine Amidase/metabolism , Protein Sorting Signals , Histidine Kinase/metabolism
14.
J Acquir Immune Defic Syndr ; 92(3): 263-270, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36331810

ABSTRACT

BACKGROUND: HIV is associated with an increased risk for emphysema. Matrix metalloproteinase 9 (MMP-9) is a lung tissue remodeling enzyme associated with emphysema. We previously found MMP-9 activity increases with increases in oxidative stress and that HIV increases alveolar oxidative stress. We hypothesized that HIV proteins would increase the risk of cigarette smoke-induced emphysema due to MMP-9. METHODS: HIV-1 transgenic rats and wild-type littermates were exposed to cigarette smoke or sham for 8 weeks. Lung compliance and histology were assessed. Bronchoalveolar lavage (BAL), primary alveolar macrophages (AM), and serum samples were obtained. A rat alveolar macrophage cell line was exposed to the HIV protein Tat, and MMP-9 levels were assessed by Western immunoblotting. MMP-9 protein expression and activity were assessed in AM from the HIV rat model by ELISA and cytoimmunofluoresence, respectively. Serum from human subjects with and without HIV and tobacco dependence was assessed for MMP-9 levels. RESULTS: MMP-9 expression was significantly increased in rat alveolar macrophages after Tat exposure. HIV-1 transgenic rats developed emphysema while wild-type littermates did not. MMP-9 expression was also increased in the serum, BAL, and AM of HIV-1 transgenic rats after exposure to cigarette smoke compared with wild-type rats. In parallel, serum samples from HIV+ smokers had higher levels of MMP-9 than subjects without HIV and those who did not smoke. CONCLUSION: The combination of HIV and cigarette smoke increases MMP-9 expression in experimental rat HIV models and human subjects. HIV and cigarette smoke both induce alveolar oxidative stress and thereby increase MMP-9 activity.


Subject(s)
Cigarette Smoking , Emphysema , HIV Infections , Pulmonary Emphysema , Rats , Humans , Animals , Matrix Metalloproteinase 9 , Rats, Transgenic , Cigarette Smoking/adverse effects , HIV Infections/pathology , Pulmonary Emphysema/etiology , Pulmonary Emphysema/metabolism , Lung , Emphysema/etiology , Emphysema/metabolism , Emphysema/pathology , Bronchoalveolar Lavage Fluid
15.
ISA Trans ; 136: 640-650, 2023 May.
Article in English | MEDLINE | ID: mdl-36379758

ABSTRACT

Tip-Enhanced Raman Spectroscopy (TERS) is an advanced analytical measurement technology combining Raman spectroscopy with Scanning Probe Microscopy, which can detect the molecular structure and chemical composition in micro-nano-scale. As an indispensable part, the micromotion system directly determines TERS spatial resolution. The existing multi-axis system is often composed of several single-axis nonlinear systems, which solves whole problems with a superposition idea of single-axis part. But the multi-axis crosstalk under an overall idea is not fully considered and will cause system uncooperative and even oscillational. Therefore, a multi-axis micromotion system in TERS and its correction method are proposed. The improved Duhem model, simple calculation without inversion, accurate matching and fast response, has been built for nonlinearity. And the feedforward decoupling method is designed for crosstalk, having a favorable multi-axis coordination, good error tracking and simplified controllers. Experimental results show that it can greatly correct the nonlinearity and crosstalk of multi-axis system simultaneously.

16.
Plant Physiol Biochem ; 194: 394-405, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36481708

ABSTRACT

The sugar transporter SWEET plays a role in plant growth, carbon allocation, and abiotic stress resistance. We examined the function of SWEET in cassava (Manihot esculenta Crantz) under water and salt stress. Bioinformatics, subcellular localization, yeast deficient complementation, and virus-induced gene silencing (VIGS) were used to examine the function of SWEET in cassava. Twenty-eight MeSWEETs genes were found based on the conserved domain MtN3/saliva of SWEET transporters, two MeSWEET15a/b of them were identified by phylogenetic analysis, which were located on the cell membrane. They transfer sucrose, fructose, glucose, and mannitol from culture media to yeast cells, predominately transferring sucrose via bleeding fluid saps in plant. Leaf sucrose content was increased in MeSWEET15a/b-silenced cassava plants, resulting in changes in carbon distribution, with an increase in starch accumulation in the leaves and a decrease in starch accumulation in the roots. The silencing of MeSWEET15a/b genes led to tolerance to water and salt stress, consistent with a high accumulation of osmolytes, and low lipid membrane peroxidation. Changes in sugar distribution increased the expression of MeTOR and MeE2Fa in pTRV2-MeSWEET15a and pTRV2-MeSWEET15b cassava leaves. MeSWEET15a/b acts as pivotal modulators of sugar distribution and tolerance to water and high salt stress in cassava.


Subject(s)
Manihot , Water , Water/metabolism , Sugars/metabolism , Manihot/genetics , Manihot/metabolism , Phylogeny , Saccharomyces cerevisiae/metabolism , Starch/metabolism , Salt Stress , Sucrose/metabolism
17.
China Tropical Medicine ; (12): 534-2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-979748

ABSTRACT

@#Abstract: Objective To explore the regional, age and annual characteristics of distribution and variation trend of children and adolescents with poor vision in Hainan Province, and to provide a theoretical basis for the formulation of targeted and effective prevention and treatment strategies. Methods The eyesight monitoring data of 5 657 231 children and adolescents aged 6 to 19 from 17 cities and counties in Hainan Province from 2013 to 2020 were analyzed. Using the "Standard Logarithmic Vision Chart" (GB11533-2011) that complies with national standards for testing. Results The rate of poor vision among children and adolescents in Hainan Province increased significantly from 2013 to 2020, and the difference between the years was statistically significant (P<0.001). The total poor vision rate in the left eye increased 10.09% (32.79% to 42.88%), and that of severe poor vision rate increased 6.68%, while that of the right eye increased 9.80% (33.11% to 42.91%) and 6.49%. The poor vision rate was significantly higher in females than in males of same year (P<0.001), but the increase pattern was the same. In 2020, there were significant differences between the same age groups in different cities and counties and between different age groups in the same city and county (P<0.001), and they all tended to increase with age. The result of analyzing the distribution characteristics of the total poor vision rate of different age groups children in the eastern (Qionghai), southern (Sanya), western (Changjiang), northern (Haikou) and central (Dingan) cities showed that the regional rate difference was small at 6-7 years old, and then increased with the increase of age. The poor vision rate of Haikou City ranked the first in all age groups, and reached the highest at 17 years old, with 76.32% and 80.89% of total poor vision rate of left and right eyes respectively. Sanya City ranked second, Qionghai ranked third. The poor vision rate of Changjiang County was lower and the growth rate was slower according to age. Conclusions From 2013 to 2020, the total and severe poor vision rates in left and right eyes of children aged 6-19 in Hainan Province increased year by year, with the ascension range of female higher than that of male, and right eye higher than that of left eye. In the same year, the poor vision rate increase rapidly with age. It is recommended to further strengthen the daily intervention and management of key populations and special age groups to reduce the rate of low vision in children and adolescents.

18.
China Tropical Medicine ; (12): 240-2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-979623

ABSTRACT

@#Abstract: Objective To analyze the value and influencing factors of cross-primer isothermal amplification technology(CPA) in clinical screening and diagnosis of tuberculosis (TB). Methods We collected 543 inpatients in the Second Affiliated Hospital of Hainan Medical College from January 1, 2018 to December 31, 2021, including 179 patients with tuberculosis, 187 patients with pneumonia and 177 patients with other diseases. The patients' sputum, alveolar lavage fluid, pleural effusion and midstream urine were detected by CPA, smear microscopy, culture method and gene detection. The value of CPA detection in the diagnosis of tuberculosis and its influencing factors were evaluated. Statistical analysis was performed using SPSS 26.0. Results The total positive rate of CPA was 14.4% (78/543), and the positive rate of sputum samples accounted for 29.1% (39/134). Among the 78 cases of CPA positive patients, the tuberculosis group accounted for 69.2% (54/78), followed by pneumonia group 21.8% (17/78), and other diseases group accounted for 9.0% (7/78). Taking CPA test as the reference method, the "sensitivity" of smear microscopy was lower than that of genetic testing and culture, while the "specificity" was higher than that of culture and gene testing, and the "missed diagnosis rate" of smear microscopy was higher than that of genetic testing and culture. CPA test positive was related to gender, ESR and pneumonia. There is a good agreement between CPA test and culture method and gene test (Kappa>0.9), and a moderate agreement between CPA test and smear microscopy (Kappa=0.616). Conclusions Sputum specimen is the best choice for CPA detection, while the value of pleural effusion detection is relatively limited. Sputum, alveolar lavage fluid and midcourse urine can be used as clinical specimens for screening and diagnosis of "tuberculosis group and other disease group", while sputum can be used for screening and diagnosis of "tuberculosis group and pneumonia group". Gender, ESR and pneumonia are the influencing factors of CPA positive patients. Therefore, CPA testing is worthy of clinical promotion, but more clinical research data are needed.

19.
Cell Death Dis ; 13(11): 931, 2022 11 07.
Article in English | MEDLINE | ID: mdl-36344505

ABSTRACT

A low response rate to immune checkpoint inhibitor (ICI) therapy has impeded its clinical use. As reported previously, an inflamed tumor microenvironment (TME) was directly correlated with patients' response to immune checkpoint blockade (ICB). Thus, restoring the cytotoxic effect of immune cells in the TME is a promising way to improve the efficacy of ICB and overcome primary resistance to immunotherapy. The effect of Pseudomonas aeruginosa mannose-sensitive-hemagglutinin (PA-MSHA) in facilitating T cell activation was determined in vitro and in vivo. Subsets of immune cells were analyzed by flow cytometry. Proteomics was carried out to comprehensively analyze the discriminated cellular kinases and transcription factors. The combinational efficacy of PA-MSHA and αPD-1 therapy was studied in vivo. In this study we demonstrated that PA-MSHA, which is a clinically used immune adjuvant, effectively induced the anti-tumor immune response and suppressed the growth of non-small cell lung cancer (NSCLC) cells. PA-MSHA showed great potential to sensitize refractory "cold" tumors to immunotherapy. It effectively enhanced macrophage M1 polarization and induced T cell activation. In vivo, in combination with αPD-1, PA-MSHA suppressed tumor growth and prolonged the survival time of allograft model mice. These results indicate that PA-MSHA is a potent agent to stimulate immune cells infiltration into the TME and consequently induces inflammation in tumors. The combination of PA-MSHA with αPD-1 is a potential strategy to enhance the clinical response rate to ICI therapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Mice , Animals , Tumor Microenvironment , Cell Line, Tumor , Cell Proliferation , Lung Neoplasms/drug therapy , Pseudomonas aeruginosa
20.
Alcohol Clin Exp Res ; 46(12): 2214-2224, 2022 12.
Article in English | MEDLINE | ID: mdl-36281822

ABSTRACT

BACKGROUND: Alcohol impairs pulmonary innate immune function and is associated with an increased risk of tuberculosis (TB). Toll-like receptor 2 (TLR2) is a pattern recognition receptor on alveolar macrophages that recognizes Mycobacterium tuberculosis (Mtb). The expression of TLR2 depends, in part, on granulocyte-macrophage colony-stimulating factor (GM-CSF) signaling. Given our prior work demonstrating the suppression of GM-CSF signaling following chronic alcohol ingestion, we hypothesized that alcohol impairs TLR2 expression via the suppression of GM-CSF and thereby reduces the ability of the macrophage to recognize and phagocytose Mtb. METHODS: Primary alveolar macrophages were isolated from control-fed and alcohol-fed rats. Prior to cell isolation, some alcohol-fed rats were treated with intranasal GM-CSF and then endotracheally inoculated with an attenuated strain of Mtb. Primary macrophages were then isolated and immunofluorescence was used to determine phagocytic efficiency and TLR2 expression in the presence and absence of GM-CSF treatment and phagocytic efficiency in the presence and absence of TLR2 neutralization. RESULTS: TLR2 expression and phagocytosis of Mtb were significantly lower in the alveolar macrophages of alcohol-fed rats than control-fed rats. In parallel, blocking TLR2 signaling recapitulated this decreased phagocytosis of Mtb. In contrast, intranasal GM-CSF treatment restored TLR2 expression and Mtb phagocytosis in the alveolar macrophages of alcohol-fed rats to levels comparable to those of control-fed rats. CONCLUSIONS: Chronic alcohol ingestion reduces TLR2 protein expression and phagocytosis of Mtb, likely due to impaired GM-CSF signaling. GM-CSF restores membrane-bound TLR2 expression and phagocytic function.


Subject(s)
Ethanol , Macrophages, Alveolar , Mycobacterium tuberculosis , Phagocytosis , Toll-Like Receptor 2 , Animals , Rats , Ethanol/adverse effects , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Macrophages, Alveolar/drug effects , Macrophages, Alveolar/metabolism , Mycobacterium tuberculosis/metabolism , Toll-Like Receptor 2/metabolism , Phagocytosis/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...